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Two famous identities

Euler-Stirling identity

For all non-negative integers n > r, we have

S(n,r):%kZOA(n,k)C::ll:), (1)

where: S(n, r) = Stirling number of second kind, counting the
number of partitions of {1,..., n} in r blocks,

A(n, k) = number of permutations = € S, having k + 1 descents
(where i is a descent if w(i) > w(i + 1)).

Stirling number as coefficients of falling factorials

Let [x]x :=x(x—1)---(x — k+ 1) be the falling factorial of degree
k and [X]o = 1.
Let x € R and let n € N. Then we have

X" =" 8(n, k)[x]. (2)
k=0

Main goal: Generalizations to Coxeter groups of types B and

D and to the colored permutation groups G;

Bhn=725x Sp; Dp={m € By|neg(r) =0mod 2} ; G,p=27Z] x S

Preliminaries

Eulerian numbers of types B and D

Desg(8) = {i € [0,n—=1] | 5(i) > B(i + 1)},
where 5(0) := 0 (we use the usual order on the integers).
In particular, 0 € Desg(/3) is a descent if and only if 5(1) < 0.

desg(3) := | Desg(5)].
Ag(n, k) :=|{5 € By | desg(5) = k}|.

B.-partitions, D,-partitions, G, ,-partitions and Stirling

numbers of second kind

A Bj-partition is a set partition )\ of [+-n] into blocks such that the
following conditions are satisfied:

» There exists at most one block satistying —C = C, called the
zero-block: C = {£i | i € S} C [£n] for some S C [n].
» If C € \is a block in the partition A\, then —C € )\ as well.

A D,-partition is a Bp-partition such that the zero-block, if exists,
contains at least two positive elements.

Example:
(a) {{1,-3,6,8,—9},{-1,3,—-6,-8,9},{2,-2},{4,5,-7},{—4,-5,7}}

zero block

IS a By-partition, which is not a Dp,-partition.
(b) {{1 ) _37 67 87 _9}7 {_1 ) 37 _67 _87 9}7i27 _27 47 _4:ta {57 _7}7 {_57 7}}

zero\glock

IS a Dy-partition.

Denote by Sg(n, r) (resp. Sp(n, r)) the number of B,- (resp.

Dy-)partitions having exactly r pairs of nonzero blocks, which are
called Stirling numbers (of the second kind) of type B (resp. type
D). They appear as sequences A039755 and A039760 in OEIS.

A B,-partition (or D,-partition) is called ordered if the set of blocks
IS totally ordered and the following conditions are satisfied:

» If the zero-block exists, then it appears as the first block.

» For a non-zero block C, the blocks C and —C are adjacent.

A G, p-partition is a set partition of
Yy — (1.2 nA0 20 pll 401 ol i1y
Into blocks such that the following conditions are satisfied:
» There exists at most one zero-block satisfying
cll = {xlH]| xll e C} = C.
~ If C appears as a block in the partition ), then C!'l € \ as well.
Two blocks Ci and C» will be called equivalent if there is a natural
number t € N such that C; = CJ = {xI*1 | xI1 € C}.
The number of G, ,-partitions with r non-equivalent nonzero

blocks is denoted by S;,(n, r).

Example for a Gs 4-partition:
( )

/"

zero block )

Euler-Stirling (Cont.)

Proof’s idea for type B (cont.)

Let 7 € B, with desg(7) = k be written in complete notation:

7T[—5—4—3—2—1 12 3 4 5]

-2 3 5 4-1]14-5-32]|°
Divide the negative part into blocks by putting separators after
every descent and reflect these separators to the positive part.

In our example:
r=|-235|-4-1]14|-5-32].
Perform the following two steps:
1. If #(—1) and =(1) are in the same block (the zero-block), then
move this block to the beginning.
2. For each non-zero block B contained in the negative part of m,
locate the block — B right after it.

If r = k, then we have associated to the signed permutation 7 an
ordered set partition of type B and we are done.

If r > k, refine the partition by simultaneously splitting pairs of
blocks of the form B and —B (where B # —B), or by splitting a
zero-block.

Example (cont.) 8 =[1,4| -5,-3,2 | | € Bs produces the
ordered Bs-partition with one pair of nonzero blocks
[{+1,+4},{-5,-3,2},{5,3, —2}], and exactly (;) ordered
Bs-partitions with two pairs of nonzero blocks, namely:

[{1 ) 4}7 {_1 ) _4}7 {_57 _37 2}7 {57 37 _2}]7
[{j:1 }7 {4}7 {_4}7 {_57 _37 2}7 {57 37 _2}17
[{£1, 4}, {5}, 19}, 13,2}, 13, =2]],
[{:l:1 y j:4}7 {_57 _3}7 {57 3}7 {2}7 {_2}]7
obtained by placing one artificial separator before entries 1,2, 4

and 5, respectively. The other ordered partitions coming from
with more blocks are obtained similarly.

Generalization of Equation (1) to type D and its idea of proof

For all non-negative integers n > r, with n # 1, we have:

2'rl - Sp(n,r) =

zr:AD(njk)(,;::) +n- 2" (r— 1)t S(n—1,r - 1)]

k=0
where S(n— 1, r — 1) is the usual Stirling number of second kind.

Proof’s idea: The proof for type D is a bit more tricky. The basic
idea is the same as in type B, except for that when a zero block
with only one pair is liable to be obtained, i.e. the permutation has
a descent after the first digit, but not before that digit, we switch
to a permutation of B, — D,,.

As a result, some of the D,-partitions are not obtained, so we
count them separately.

Falling factorials

Generalization of Equation (2) to type B

(Remmel-Wachs, Bala)

Let x € R and let n € N. Then we have:

x" =% Sp(n. k)X,
k=0

where [x]? == (x — 1)(x — 3)--- (x — 2k + 1) and [x]§ := 1.

Euler-Stirling

Generalization of Equation (1) to type B

For all non-negative integers n > r, we have:

2'r1- Sg(n,r) = > Ag(n, k) (’r’ B /’:)
k=0

Proof’s idea for type B

L.H.S. = Number of ordered set partitions of [+n] of type B.
R.H.S. = Weighted sum of numbers of signed permutations
classified by their descents.

bagnoe@jct.ac.1l

Our combinatorial proof’s idea for type B (suggested to us

by V. Reiner)

It is sufficient to prove the identity for odd integers x =2m + 1:
L.H.S counts lattice points of the cube [—-m, m]" N Z".

R.H.S. exploits B,-partitions to count these points using the
maximal intersection subsets of hyperplanes the points lay on.
Example: The Bg-partition

A={{1,-2,4} {—1,2,—-4} {3,-5},{-3,5},{6,—6}}
corresponds to the subspace:
{x1=—X=Xx4} N{xX3=—x5} N{xs = 0}.

Example: Letn=2and m=3,so0x=2m+1=7.
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k = 0: The only B>-partition with 0 non-zero blocks is
Mo = {{1,—-1,2,—-2}} corresponding to the subspace
{x1 = xo = 0}, containing only (0, 0).

k = 1: We have four B»-partitions, two of them contain a
zero-block:

AM={{1,-11{2}{-2}} — {(x1,x)[x1 =0}

ro={{2, -2}, {1}, {-1}} — {(x1,x)[Xx2=0}
and two of them do not:

A3 ={{1,2},{-1,-2}} — {(a,x)|x =X}

M=H{1,-21{-1.2}} = {(x4,x) [ X1 = —xe}.
Each of these hyperplanes contains 6 points (w/o the origin).
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Falling factorials (Cont.)

Combinatorial proof (cont.)

The rest of the points are counted in the case of kK = n = 2 pairs of
non-zero blocks:
k = 2: The single B>-partition:

s = {1} {1} {2}, {-2}} — {(a,x)[x #xx#0}

which are the lattice points not lying on any hyperplane.

Falling factorial for type D
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k =0;
[X]7 = ¢ )(x —3)---(x — (2k — 1)), 1<k<n
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AN TN

A

|
1

\

Generalization of Equation (2) to type D

Foralln € Nand x € R:

X" =" Sp(n KX+ ((x = 1) = [X24).
k=0

Proof’s idea for type D

letn=2and m=3,sox=2m+1=7.
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k = 0: we have exactly one D»-partition \g = {{1,—-1,2,-2}}
which counts only the lattice point (0, 0).

k = 1: we have only two D»-partitions:
AM={{1,2}{-1.-2}} = {(x,X)|x1 =X}
o ={{1,-2},{-1,2}; — {(x,x)]|X1=—x}

k = 2: There is a single D»-partition:

As =15 {=11121,1=2}F = (¥, %) | x1 7 +x}

Now, the value 0 can also appear (different from type B, since the
axes were not counted in step k = 1 of type D).
These are all the lattice points which do not lie on the diagonals.

The missing lattice points for n > 3

When n > 3, there are points which are not counted. They have

the form (x1, x2, x3), such that exactly one of their coordinates is 0
and the other two share the same absolute value. e.g. the points
(0,2,2) and (0,2, —2) are not counted.

The number of such missing lattice points (which is the second
summand in the R.H.S.forn=3)is: 3-6°—3-6-4 = 36.

Generalization of Equation (2) to colored permutation

groups G, ,

n
Let x € R and n € N. Then we have: x" = > Sp(n, k)[x]}
k=0
Sketch of the proof:

» Divide the unit circle S' according to the mth roots of unity:
1, pm, p%, ..., pm=1. This divides the circle into m arcs.
» In each arc, locate t points in equal distances from each other.

» We get x = mt + 1 points on the unit circle, including the point
(1,0).

py 214 3
p3 - 1 2
pé-Z 1pg:1
p3 -3
py -4 2ﬂ§°5
p}-5 2'03'4
P8 2122 1 .

» Consider the n-dimensional torus (S")" = S! x .. x ST with x”
lattice points on it.
The same arguments will apply, when we interpret the
G, p-partitions as intersections of subsets of hyperplanes in the
generalized hyperplane arrangement G, , for the colored
permutations group:

Gmn == { {xi=pix} |1<i<j<n0<k<m}
U {{x=0}[1<i<nl
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