Some identities involving second kind Stirling numbers of types B and D

Eli Bagno (JCT), Riccardo Biagioli (Lyon) and David Garber (HIT)

Two famous identities

Euler-Stirling identity

For all non-negative integers $n \ge r$, we have

$$S(n,r) = \frac{1}{r!} \sum_{k=0}^{r} A(n,k) \binom{n-k}{r-k}, \tag{1}$$

where: S(n, r) = Stirling number of second kind, counting the number of partitions of $\{1, \ldots, n\}$ in r blocks, A(n, k) = number of permutations $\pi \in S_n$ having k + 1 descents (where i is a *descent* if $\pi(i) > \pi(i + 1)$).

Stirling number as coefficients of falling factorials

Let $[x]_k := x(x-1)\cdots(x-k+1)$ be the *falling factorial of degree* k and $[x]_0 := 1$.

Let $x \in \mathbb{R}$ and let $n \in \mathbb{N}$. Then we have

$$x^n = \sum_{k=0}^n S(n,k)[x]_k.$$

Main goal: Generalizations to Coxeter groups of types B and D and to the colored permutation groups $G_{r,n}$

$$B_n = \mathbb{Z}_2^n \ltimes S_n$$
; $D_n = \{\pi \in B_n \mid \operatorname{neg}(\pi) \equiv 0 \mod 2\}$; $G_{r,n} = \mathbb{Z}_r^n \ltimes S_n$

Preliminaries

Eulerian numbers of types *B* and *D*

 $\mathsf{Des}_{\mathcal{B}}(\beta) = \{i \in [0, n-1] \mid \beta(i) > \beta(i+1)\},$ where $\beta(0) := 0$ (we use the usual order on the integers). In particular, $0 \in \mathsf{Des}_{\mathcal{B}}(\beta)$ is a descent if and only if $\beta(1) < 0$.

$$\mathsf{des}_{\mathcal{B}}(\beta) := |\mathsf{Des}_{\mathcal{B}}(\beta)|.$$
 $A_{\mathcal{B}}(n, k) := |\{\beta \in \mathcal{B}_n \mid \mathsf{des}_{\mathcal{B}}(\beta) = k\}|.$

B_n -partitions, D_n -partitions, $G_{r,n}$ -partitions and Stirling numbers of second kind

A B_n -partition is a set partition λ of $[\pm n]$ into blocks such that the following conditions are satisfied:

- There exists at most one block satisfying −C = C, called the zero-block: C = {±i | i ∈ S} ⊆ [±n] for some S ⊆ [n].
 If C ∈ λ is a block in the partition λ, then −C ∈ λ as well.
- A D_n -partition is a B_n -partition such that the zero-block, if exists, contains at least two positive elements.
- Example: (a) $\{\{1, -3, 6, 8, -9\}, \{-1, 3, -6, -8, 9\}, \underbrace{\{2, -2\}}_{\text{zero block}}, \{4, 5, -7\}, \{-4, -5, 7\}\}$
- is a B_n -partition, which is not a D_n -partition. (b) $\{\{1, -3, 6, 8, -9\}, \{-1, 3, -6, -8, 9\}, \{2, -2, 4, -4\}, \{5, -7\}, \{-5, 7\}\}$

is a D_n -partition.

Denote by $S_B(n, r)$ (resp. $S_D(n, r)$) the number of B_{n-1} (resp. D_{n-1}) partitions having exactly r pairs of nonzero blocks, which are called *Stirling numbers* (of the second kind) of type B (resp. type D). They appear as sequences A039755 and A039760 in OEIS.

A B_n -partition (or D_n -partition) is called *ordered* if the set of blocks is totally ordered and the following conditions are satisfied:

- If the zero-block exists, then it appears as the first block.
- For a non-zero block C, the blocks C and -C are adjacent.

A $G_{r,n}$ -partition is a set partition of $\Sigma = \{1,2,\ldots,n,1^{[1]},2^{[1]},\ldots,n^{[1]},\ldots,1^{[r-1]},2^{[r-1]},\ldots,n^{[r-1]}\}$

into blocks such that the following conditions are satisfied: • There exists at most one *zero-block* satisfying $C^{[1]} = \{x^{[i+1]} \mid x^{[i]} \in C\} = C.$

If C appears as a block in the partition λ , then $C^{[1]} \in \lambda$ as well. Two blocks C_1 and C_2 will be called *equivalent* if there is a natural number $t \in \mathbb{N}$ such that $C_1 = C_2^{[t]} = \{x^{[i+t]} \mid x^{[i]} \in C\}$. The number of $G_{r,n}$ -partitions with r non-equivalent nonzero blocks is denoted by $S_m(n,r)$. Example for a $G_{3,4}$ -partition:

 $\left\{\underbrace{\left\{1,1^{[1]},1^{[2]},2,2^{[1]},2^{[2]}\right\}}_{\text{zero block}},\left\{3,4^{[1]}\right\},\left\{3^{[1]},4^{[2]}\right\},\left\{3^{[2]},4\right\}\right\}$

Euler-Stirling

Generalization of Equation (1) to type B

For all non-negative integers $n \ge r$, we have:

$$2^{r}r! \cdot S_{B}(n,r) = \sum_{k=0}^{r} A_{B}(n,k) {n-k \choose r-k}.$$

Proof's idea for type *B*

L.H.S. = Number of ordered set partitions of $[\pm n]$ of type B. R.H.S. = Weighted sum of numbers of signed permutations classified by their descents.

Euler-Stirling (Cont.)

Proof's idea for type B (cont.)

Let $\pi \in B_n$ with $des_B(\pi) = k$ be written in complete notation:

$$\pi = \begin{bmatrix} -5 & -4 & -3 & -2 & -1 \\ -2 & 3 & 5 & -4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & -5 & -3 & 2 \end{bmatrix}.$$

Divide the negative part into blocks by putting separators after every descent and reflect these separators to the positive part. In our example:

$$\pi = [-2 \ 3 \ 5 \ | \ -4 \ -1 \ | \ 1 \ 4 \ | \ -5 \ -3 \ 2 \].$$

Perform the following two steps:

- 1. If $\pi(-1)$ and $\pi(1)$ are in the same block (the zero-block), then move this block to the beginning.
- 2. For each non-zero block B contained in the negative part of π , locate the block -B right after it.

If r = k, then we have associated to the signed permutation π an ordered set partition of type B and we are done. If r > k, refine the partition by simultaneously splitting pairs of blocks of the form B and -B (where $B \neq -B$), or by splitting a zero-block.

Example (cont.) $\beta = [1,4 \mid -5, -3,2 \mid] \in B_5$ produces the ordered B_5 -partition with one pair of nonzero blocks $[\{\pm 1, \pm 4\}, \{-5, -3, 2\}, \{5, 3, -2\}]$, and exactly $\binom{4}{1}$ ordered B_5 -partitions with two pairs of nonzero blocks, namely:

$$\begin{split} & [\{1,4\},\{-1,-4\},\{-5,-3,2\},\{5,3,-2\}], \\ & [\{\pm 1\},\{4\},\{-4\},\{-5,-3,2\},\{5,3,-2\}], \\ & [\{\pm 1,\pm 4\},\{-5\},\{5\},\{-3,2\},\{3,-2\}], \\ & [\{\pm 1,\pm 4\},\{-5,-3\},\{5,3\},\{2\},\{-2\}], \end{split}$$

obtained by placing one artificial separator before entries 1, 2, 4 and 5, respectively. The other ordered partitions coming from β with more blocks are obtained similarly.

Generalization of Equation (1) to type D and its idea of proof

For all non-negative integers $n \ge r$, with $n \ne 1$, we have:

$$2^{r}r! \cdot S_{D}(n,r) = \left[\sum_{k=0}^{r} A_{D}(n,k) {n-k \choose r-k} + n \cdot 2^{n-1}(r-1)! \cdot S(n-1,r-1) \right]$$

where S(n-1,r-1) is the usual Stirling number of second kind.

Proof's idea: The proof for type D is a bit more tricky. The basic idea is the same as in type B, except for that when a zero block with only one pair is liable to be obtained, i.e. the permutation has a descent **after** the first digit, but not **before** that digit, we switch to a permutation of $B_n - D_n$.

As a result, some of the D_n -partitions are not obtained, so we count them separately.

Falling factorials

Generalization of Equation (2) to type *B* (Remmel-Wachs, Bala)

Let $x \in \mathbb{R}$ and let $n \in \mathbb{N}$. Then we have:

$$x^n = \sum_{k=0}^n S_B(n,k)[x]_k^B,$$

where $[x]_k^B := (x-1)(x-3)\cdots(x-2k+1)$ and $[x]_0^B := 1$.

Our combinatorial proof's idea for type B (suggested to us by V. Reiner)

It is sufficient to prove the identity for odd integers x = 2m + 1: L.H.S counts lattice points of the cube $[-m, m]^n \cap \mathbb{Z}^n$.

R.H.S. exploits B_n -partitions to count these points using the maximal intersection subsets of hyperplanes the points lay on. Example: The B_6 -partition

 $\lambda = \{\{1, -2, 4\}, \{-1, 2, -4\}, \{3, -5\}, \{-3, 5\}, \{6, -6\}\}\}$ corresponds to the subspace:

$$\{x_1=-x_2=x_4\}\cap\{x_3=-x_5\}\cap\{x_6=0\}.$$

Example: Let n = 2 and m = 3, so x = 2m + 1 = 7.

k = 0: The only B_2 -partition with 0 non-zero blocks is $\lambda_0 = \{\{1, -1, 2, -2\}\}$ corresponding to the subspace $\{x_1 = x_2 = 0\}$, containing only $\{0, 0\}$.

k = 1: We have four B_2 -partitions, two of them contain a zero-block:

$$\lambda_1 = \{\{1, -1\}, \{2\}, \{-2\}\} \mapsto \{(x_1, x_2) \mid x_1 = 0\}$$
 $\lambda_2 = \{\{2, -2\}, \{1\}, \{-1\}\} \mapsto \{(x_1, x_2) \mid x_2 = 0\}$

and two of them do not:

$$\lambda_3 = \{\{1,2\}, \{-1,-2\}\} \mapsto \{(x_1,x_2) \mid x_1 = x_2\}$$

$$\lambda_4 = \{\{1,-2\}, \{-1,2\}\} \mapsto \{(x_1,x_2) \mid x_1 = -x_2\}.$$

Each of these hyperplanes contains 6 points (w/o the origin).

JERUSALEM COLLEGE OF TECHNOLOGY

מכון טכנולוגי חולון

Combinatorial proof (cont.)

UNIVERSITÉ

JJJ DE LYON

The rest of the points are counted in the case of k = n = 2 pairs of non-zero blocks:

k = 2: The single B_2 -partition:

$$\lambda_5 = \{\{1\}, \{-1\}, \{2\}, \{-2\}\} \quad \mapsto \quad \{(x_1, x_2) \mid x_1 \neq \pm x_2 \neq 0\}$$

which are the lattice points not lying on any hyperplane.

Falling factorial for type D

$$[x]_k^D := \begin{cases} 1, & k = 0; \\ (x-1)(x-3)\cdots(x-(2k-1)), & 1 \le k < n; \\ (x-1)(x-3)\cdots(x-(2n-3))(x-(n-1)), & k = n. \end{cases}$$

Generalization of Equation (2) to type D

For all $n \in \mathbb{N}$ and $x \in \mathbb{R}$:

$$x^{n} = \sum_{k=0}^{n} S_{D}(n,k)[x]_{k}^{D} + n\left((x-1)^{n-1} - [x]_{n-1}^{D}\right).$$

Proof's idea for type D

Let n = 2 and m = 3, so x = 2m + 1 = 7.

k = 0: we have exactly one D_2 -partition $\lambda_0 = \{\{1, -1, 2, -2\}\}$ which counts only the lattice point (0, 0).

k = 1: we have only two D_2 -partitions:

$$\lambda_1 = \{\{1,2\}, \{-1,-2\}\} \mapsto \{(x_1,x_2) \mid x_1 = x_2\}$$
 $\lambda_2 = \{\{1,-2\}, \{-1,2\}\} \mapsto \{(x_1,x_2) \mid x_1 = -x_2\}$

k = 2: There is a single D_2 -partition:

$$\lambda_3 = \{\{1\}, \{-1\}, \{2\}, \{-2\}\} \mapsto \{(x_1, x_2) \mid x_1 \neq \pm x_2\}$$

Now, the value 0 can also appear (different from type B, since the axes were not counted in step k = 1 of type D).

These are all the lattice points which do not lie on the diagonals.

The missing lattice points for $n \ge 3$

When $n \ge 3$, there are points which are not counted. They have the form (x_1, x_2, x_3) , such that exactly one of their coordinates is 0 and the other two share the same absolute value. e.g. the points (0, 2, 2) and (0, 2, -2) are not counted.

The number of such missing lattice points (which is the second summand in the R.H.S. for n = 3) is: $3 \cdot 6^2 - 3 \cdot 6 \cdot 4 = 36$.

Generalization of Equation (2) to colored permutation groups $G_{r,n}$

Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then we have: $x^n = \sum_{k=0}^n S_m(n, k)[x]_k^m$.

Sketch of the proof: k=0 k=0

- Divide the unit circle S^1 according to the mth roots of unity: $1, \rho_m, \rho_m^2, \dots, \rho_m^{m-1}$. This divides the circle into m arcs.
- In each arc, locate t points in equal distances from each other.
 We get x = mt + 1 points on the unit circle, including the point
 - We get x = mt + 1 points on the unit circle, including the point (1,0).

Consider the *n*-dimensional torus $(S^1)^n = S^1 \times \cdots \times S^1$ with x^n lattice points on it.

The same arguments will apply, when we interpret the $G_{r,n}$ -partitions as intersections of subsets of hyperplanes in the generalized hyperplane arrangement $\mathcal{G}_{m,n}$ for the colored permutations group:

$$\mathcal{G}_{m,n} := \{ \{ x_i = \rho_m^k x_j \} \mid 1 \le i < j \le n, 0 \le k < m \}$$

$$\cup \{ \{ x_i = 0 \} \mid 1 \le i \le n \},$$

QR codes for relevant papers by the authors

