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Two famous identities
Euler-Stirling identity

For all non-negative integers n ≥ r , we have

S(n, r ) =
1
r !

r∑
k=0

A(n, k)

(
n − k
r − k

)
, (1)

where: S(n, r ) = Stirling number of second kind, counting the
number of partitions of {1, . . . ,n} in r blocks,
A(n, k) = number of permutations π ∈ Sn having k + 1 descents
(where i is a descent if π(i) > π(i + 1)).

Stirling number as coefficients of falling factorials

Let [x ]k := x(x − 1) · · · (x − k + 1) be the falling factorial of degree
k and [x ]0 := 1.
Let x ∈ R and let n ∈ N. Then we have

xn =
n∑

k=0

S(n, k)[x ]k . (2)

Main goal: Generalizations to Coxeter groups of types B and
D and to the colored permutation groups Gr ,n

Bn = Zn
2 n Sn ; Dn = {π ∈ Bn | neg(π) ≡ 0 mod 2} ; Gr ,n = Zn

r n Sn

Preliminaries
Eulerian numbers of types B and D

DesB(β) = {i ∈ [0,n − 1] | β(i) > β(i + 1)},
where β(0) := 0 (we use the usual order on the integers).
In particular, 0 ∈ DesB(β) is a descent if and only if β(1) < 0.

desB(β) := |DesB(β)|.
AB(n, k) := |{β ∈ Bn | desB(β) = k}|.

Bn-partitions, Dn-partitions, Gr ,n-partitions and Stirling
numbers of second kind

A Bn-partition is a set partition λ of [±n] into blocks such that the
following conditions are satisfied:
I There exists at most one block satisfying −C = C, called the

zero-block: C = {±i | i ∈ S} ⊆ [±n] for some S ⊆ [n].
I If C ∈ λ is a block in the partition λ, then −C ∈ λ as well.

A Dn-partition is a Bn-partition such that the zero-block, if exists,
contains at least two positive elements.
Example:

(a) {{1,−3,6,8,−9}, {−1,3,−6,−8,9}, {2,−2}︸ ︷︷ ︸
zero block

, {4,5,−7}, {−4,−5,7}}

is a Bn-partition, which is not a Dn-partition.
(b) {{1,−3,6,8,−9}, {−1,3,−6,−8,9}, {2,−2,4,−4}︸ ︷︷ ︸

zero block

, {5,−7}, {−5,7}}

is a Dn-partition.

Denote by SB(n, r ) (resp. SD(n, r )) the number of Bn- (resp.
Dn-)partitions having exactly r pairs of nonzero blocks, which are
called Stirling numbers (of the second kind) of type B (resp. type
D). They appear as sequences A039755 and A039760 in OEIS.

A Bn-partition (or Dn-partition) is called ordered if the set of blocks
is totally ordered and the following conditions are satisfied:
I If the zero-block exists, then it appears as the first block.
I For a non-zero block C, the blocks C and −C are adjacent.

A Gr ,n-partition is a set partition of
Σ = {1,2, . . . ,n,1[1],2[1], . . . ,n[1], . . . ,1[r−1],2[r−1], . . . ,n[r−1]}

into blocks such that the following conditions are satisfied:
I There exists at most one zero-block satisfying

C [1] =
{

x [i+1] | x [i ] ∈ C
}

= C.
I If C appears as a block in the partition λ, then C [1] ∈ λ as well.

Two blocks C1 and C2 will be called equivalent if there is a natural
number t ∈ N such that C1 = C [t ]

2 =
{

x [i+t ] | x [i ] ∈ C
}

.
The number of Gr ,n-partitions with r non-equivalent nonzero
blocks is denoted by Sm(n, r ).
Example for a G3,4-partition:

{
1,1[1],1[2],2,2[1],2[2]

}
︸ ︷︷ ︸

zero block

,
{

3,4[1]
}
,
{

3[1],4[2]
}
,
{

3[2],4
} .

Euler-Stirling
Generalization of Equation (1) to type B

For all non-negative integers n ≥ r , we have:

2rr ! · SB(n, r ) =
r∑

k=0

AB(n, k)

(
n − k
r − k

)
.

Proof’s idea for type B

L.H.S. = Number of ordered set partitions of [±n] of type B.
R.H.S. = Weighted sum of numbers of signed permutations
classified by their descents.

Euler-Stirling (Cont.)
Proof’s idea for type B (cont.)

Let π ∈ Bn with desB(π) = k be written in complete notation:

π =

[
−5 −4 −3 −2 −1 1 2 3 4 5
−2 3 5 −4 −1 1 4 −5 −3 2

]
.

Divide the negative part into blocks by putting separators after
every descent and reflect these separators to the positive part.
In our example:

π =
[
−2 3 5 −4 −1 1 4 −5 −3 2

]
.

Perform the following two steps:
1. If π(−1) and π(1) are in the same block (the zero-block), then

move this block to the beginning.
2. For each non-zero block B contained in the negative part of π,

locate the block −B right after it.
If r = k , then we have associated to the signed permutation π an
ordered set partition of type B and we are done.
If r > k , refine the partition by simultaneously splitting pairs of
blocks of the form B and −B (where B 6= −B), or by splitting a
zero-block.
Example (cont.) β = [ 1,4 | −5,−3,2 | ] ∈ B5 produces the
ordered B5-partition with one pair of nonzero blocks
[{±1,±4}, {−5,−3,2}, {5,3,−2}], and exactly

(4
1

)
ordered

B5-partitions with two pairs of nonzero blocks, namely:

[{1,4}, {−1,−4}, {−5,−3,2}, {5,3,−2}],
[{±1}, {4}, {−4}, {−5,−3,2}, {5,3,−2}],

[{±1,±4}, {−5}, {5}, {−3,2}, {3,−2}],
[{±1,±4}, {−5,−3}, {5,3}, {2}, {−2}],

obtained by placing one artificial separator before entries 1,2,4
and 5, respectively. The other ordered partitions coming from β
with more blocks are obtained similarly.

Generalization of Equation (1) to type D and its idea of proof

For all non-negative integers n ≥ r , with n 6= 1, we have:

2r r ! · SD(n, r ) =

[
r∑

k=0

AD(n, k)

(
n − k
r − k

)
+ n · 2n−1(r − 1)! · S(n − 1, r − 1)

]
where S(n − 1, r − 1) is the usual Stirling number of second kind.

Proof’s idea: The proof for type D is a bit more tricky. The basic
idea is the same as in type B, except for that when a zero block
with only one pair is liable to be obtained, i.e. the permutation has
a descent after the first digit, but not before that digit, we switch
to a permutation of Bn − Dn.
As a result, some of the Dn-partitions are not obtained, so we
count them separately.

Falling factorials
Generalization of Equation (2) to type B
(Remmel-Wachs, Bala)

Let x ∈ R and let n ∈ N. Then we have:

xn =
n∑

k=0

SB(n, k)[x ]Bk ,

where [x ]Bk := (x − 1)(x − 3) · · · (x − 2k + 1) and [x ]B0 := 1.

Our combinatorial proof’s idea for type B (suggested to us
by V. Reiner)

It is sufficient to prove the identity for odd integers x = 2m + 1:
L.H.S counts lattice points of the cube [−m,m]n ∩ Zn.
R.H.S. exploits Bn-partitions to count these points using the
maximal intersection subsets of hyperplanes the points lay on.
Example: The B6-partition

λ = {{1,−2,4}, {−1,2,−4}, {3,−5}, {−3,5}, {6,−6}}
corresponds to the subspace:

{x1 = −x2 = x4} ∩ {x3 = −x5} ∩ {x6 = 0}.
Example: Let n = 2 and m = 3, so x = 2m + 1 = 7.

2 3

1

2

3

−1

−2

−3

1−2 −1−3 0

k = 0: The only B2-partition with 0 non-zero blocks is
λ0 = {{1,−1,2,−2}} corresponding to the subspace
{x1 = x2 = 0}, containing only (0,0).

k = 1: We have four B2-partitions, two of them contain a
zero-block:

λ1 = {{1,−1}, {2}, {−2}} 7→ {(x1, x2) | x1 = 0}
λ2 = {{2,−2}, {1}, {−1}} 7→ {(x1, x2) | x2 = 0}

and two of them do not:

λ3 = {{1,2}, {−1,−2}} 7→ {(x1, x2) | x1 = x2}
λ4 = {{1,−2}, {−1,2}} 7→ {(x1, x2) | x1 = −x2}.

Each of these hyperplanes contains 6 points (w/o the origin).

Falling factorials (Cont.)
Combinatorial proof (cont.)

The rest of the points are counted in the case of k = n = 2 pairs of
non-zero blocks:
k = 2: The single B2-partition:

λ5 = {{1}, {−1}, {2}, {−2}} 7→ {(x1, x2) | x1 6= ±x2 6= 0}
which are the lattice points not lying on any hyperplane.

Falling factorial for type D

[x ]Dk :=

 1, k = 0;
(x − 1)(x − 3) · · · (x − (2k − 1)), 1 ≤ k < n;
(x − 1)(x − 3) · · · (x − (2n − 3))(x − (n − 1)), k = n.

Generalization of Equation (2) to type D

For all n ∈ N and x ∈ R:

xn =
n∑

k=0

SD(n, k)[x ]Dk + n
(

(x − 1)n−1 − [x ]Dn−1

)
.

Proof’s idea for type D

Let n = 2 and m = 3, so x = 2m + 1 = 7.

2 3
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1−2 −1−3 0

k = 0: we have exactly one D2-partition λ0 = {{1,−1,2,−2}}
which counts only the lattice point (0,0).

k = 1: we have only two D2-partitions:

λ1 = {{1,2}, {−1,−2}} 7→ {(x1, x2) | x1 = x2}
λ2 = {{1,−2}, {−1,2}} 7→ {(x1, x2) | x1 = −x2}

k = 2: There is a single D2-partition:

λ3 = {{1}, {−1}, {2}, {−2}} 7→ {(x1, x2) | x1 6= ±x2}
Now, the value 0 can also appear (different from type B, since the
axes were not counted in step k = 1 of type D).
These are all the lattice points which do not lie on the diagonals.

The missing lattice points for n ≥ 3

When n ≥ 3, there are points which are not counted. They have
the form (x1, x2, x3), such that exactly one of their coordinates is 0
and the other two share the same absolute value. e.g. the points
(0,2,2) and (0,2,−2) are not counted.
The number of such missing lattice points (which is the second
summand in the R.H.S. for n = 3) is: 3 · 62 − 3 · 6 · 4 = 36.

Generalization of Equation (2) to colored permutation
groups Gr ,n

Let x ∈ R and n ∈ N. Then we have: xn =
n∑

k=0
Sm(n, k)[x ]mk .

Sketch of the proof:
I Divide the unit circle S1 according to the mth roots of unity:

1, ρm, ρ
2
m, . . . , ρ

m−1
m . This divides the circle into m arcs.

I In each arc, locate t points in equal distances from each other.
I We get x = mt + 1 points on the unit circle, including the point

(1,0).

ρ0
3 = 1

1
2

3
45ρ1

3

ρ1
3 · 1

ρ1
3 · 2

ρ1
3 · 3
ρ1

3 · 4

ρ1
3 · 5

ρ2
3 ρ2

3 · 1ρ2
3 · 2

ρ2
3 · 3

ρ2
3 · 4
ρ2

3 · 5

I Consider the n-dimensional torus (S1)n = S1 × · · · × S1 with xn

lattice points on it.
The same arguments will apply, when we interpret the
Gr ,n-partitions as intersections of subsets of hyperplanes in the
generalized hyperplane arrangement Gm,n for the colored
permutations group:

Gm,n := { {xi = ρk
mxj} | 1 ≤ i < j ≤ n,0 ≤ k < m}

∪ { {xi = 0} | 1 ≤ i ≤ n},
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